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The determination of the attractor dimension from an experimental time series 
may be affected by the influence of filters which are incorporated into many 
measuring processes. While this is expected from the Kaplan-Yorke conjecture, 
we show that for one-dimensional maps a weak filter can induce a self-similarity 
which is responsible for the increase of the Hausdorff dimension. We are able to 
calculate the increase of the generalized dimension Dq for the filtered time series 
of the logistic map x, +1= rx~(1-  xl) at r = 4 analytically. 

KEY WORDS: Frobenius-Perron integral equation; filtered time series of 
one-dimensional maps; Liapunov exponent; Hausdorff dimension; generalized 
dimension D q. 

1. I N T R O D U C T I O N  

Chao t i c  signals are f requent ly  charac ter ized  by eva lua t ing  the fractal  
d imens ion  of  the under ly ing  s t range a t t rac tor ,  which is recons t ruc ted  in a 
sui table  embedd ing  space. (1/A var ie ty  of factors affect the de te rmina t ion  of 
its d imension.  One of these is the bandwid th  of  a filter which could  be 
i nco rpo ra t ed  inevi tab ly  in to  the measur ing  ins t rument .  Badii  and  Pol i t i  (2'3/ 
showed by means  of  the K a p l a n - Y o r k e  conjecture  and numerica l ly  that  the 
d imens ion  of a low-d imens iona l  chaot ic  t ime series can be raised if it is 
fi l tered by a low pass  filter of first order.  

W e  invest igate  the fil tered t ime series of the logist ic m a p  and show 
analy t ica l ly  how its d imens ion  increases. The  two-d imens iona l  invar ian t  
densi ty  of the coupled  system consis t ing of the logist ic m a p  and  the filter 
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is calculated in a perturbation-theoretic way in the limit of a weak filter. 
The resulting density is in excellent agreement with numerical results 
obtained with a statistical method in which the two-dimensional phase 
space is divided into squares and the number of intersections of the trajectory 
with each square is counted. The analytic form of the density allows us also 
to calculate the generalized dimension (t) Dq analytically. We show that for 
arbitrary one-dimensional maps a weak filter always induces self-similarity 
due to which the Hausdorff dimension increases. 

2. CALCULATION OF THE I N V A R I A N T  DENSITY p(x, z) 

The influence of a low-pass filter of first order on a signal xi which 
appears at discrete times i can be modeled via 

z i + l = e z i + ( 1 - ~ ) x i + l  (2.1) 

Here we assumed that xi is confined to the interval [0, 1] and we scaled 
zi to the same interval by introducing a factor ( 1 -  e). The z~ is the filtered 
signal and e = e -~, where t/ is the bandwidth of the filter. (2'3) For  the 
logistic map at r = 4 

xi+ 1 = f (x i )  = 4x~(1 - x~) (2.2) 

the invariant density is given by (1) 
1 

tS(x) - rc Ix(1 - x) ] 1/2 (2.3) 

The two-dimensional density p(x, z) obeys the Frobenius-Perron equation 

p(x,z)= dz' dx' 6 ( x - 4 x ' ( 1 - x ' ) ) 6 ( z - ~ z ' - ( 1 - e ) x ) p ( x ' , z ' )  

1 ~ P (g j ( x ) ,Z -  ( 1  - e)x)=_ F[p](x.z / (2.4) 
=44(1 _x) l /2  

J'=1,2 

where 

1 - ( - 1 ) :  (1 - x )  t/2 
g i (x) -  2 , j =  1, 2 (2.5) 

and (1 - e)x ~< z ~< e + (1 - ~)x. For  e = 0 the two-dimensional invariant 
density is given by 

p(~ z) = ~(x) ~(z - x) (2.6) 

Equation (2.4) can be solved iteratively via 

p(n)(x, z )=F[p (" 1)](x.z) (2.7) 
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For arbitrary n/> 1 the invariant density p(n~ is given by 

p("~(x, z) 

= 2 - " ~ 6 ( x ) ~  6(Z--(1--~)X--~-',gi(lig)16"ngj,{gj,_l(...(gjl(X))...)) ) 
j l  , J2,...,  j n  = l ,  2 i = 1  

2 n 

=-2 "~(x) ~ 6(z-v~)(x)) (2.8) 
m = l  

The intricate functions in the argument of the 2 ~ 6-functions in p(') are 
denoted by (") v m (x) (m = 1, 2 ..... 2"). If all powers e" which appear in p(~) are 
replaced by zero, it reduces to pC, ~). Therefore the iteration of nth order 
will give a solution which is correct up to the nth power of ~. 

We find explicitly 
1 

p(~ z ) =  lr [x(1 - x ) ]  1/2 6(Z-  X) (2.9a) 

the first iteration yields 

p~'(x, z)= 1 {6 (z_ (l_~)x_~ (~+~ (l_xtlj2)) 
2~[x(1 - x)] 1/2 

( +6 z - ( 1 - e ) x - e  - ~ ( 1 - x )  1/2 (2.9b) 

and the second iteration yields 

, {( ( 1  ) p(2~(x,z)=4~[x(l_x)]l/2 6 z-(1-e)x-e(1-e)  ~ + ~ ( 1 - x )  I/2 

1 1 1 qa/2\\  ); 

~+~ ~+~(1-x) '/~ 

1 _x)~/2 ) 
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Fig. 1. The invariant density p(x, z) computed with the statistical method for t /= 0.7. 

The results of the statistical method explained in the introduction (Fig. 1) 
and the perturbational method (Fig. 2) are compared for t /= 0.7. For the 
perturbational method p(m) has been used. The b-functions appearing there 
have been approximated by Gaussians. 

3. THE STRUCTURE OF THE ATTRACTOR 

The image of the attractor in the x - z  plane is generated by the zeros 
of the arguments of the 6-functions of the specific approximations. In Fig. 3 
the attractor generated by p(,I (Fig. 3a) and p(2) (Fig. 3b) are depicted; 
they are called first- and second-order attractors for brevity. We chose 
t /= 2 for these plots, i.e., g ~-0.14 and ~2~ 0.02. The first-order attractor 
consists of two lines in the plane the distance of which is of order g. They 
have been created from the solitary line of the zeroth-order attractor by the 
iteration pO)=F[p(O~]. Calculating the second-order attractor, each line 
of the first-order attractor is split into two lines separated by a distance of 
order e 2. Provided e is small enough, the second-order attractor consists of 
two pairs of lines the mean distance of which is of order z. This process can 
be continued by iteration such that the nth-order attractor consists of 2 n 
lines, which are arranged in a self-similar pattern. This self-similarity is 
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9(x,z) 

Z 

Fig. 2. The invariant density p(x, z) computed with the perturbational method for ~/= 0.7. 

characterized by the fact that each line of the attractor which can be 
resolved at a given scale will split into two lines if the scale is magnified by 
1/e. This line doubling is a consequence of the properties of the logistic 
map [Eq. (2.2)], i.e., the inverse map consists of two branches. 

If e exceeds a critical value ec, the self-similarity of the attractor 
vanishes and it becomes quasi-two-dimensional. This can be understood 
from a simple consideration, which is illustrated by the schematic diagram 
in Fig. 4. The straight lines are two adjacent lines of the nth-order attractor. 
The dashed lines are the corresponding four lines of the (n + 1)th-order 
attractor; each pair is positioned symmetrically around the correspondent 
line of the nth-order attractor. If the distance between line C and line D, 
which is denoted by CD, becomes lower than the sum BC + DE, the self- 
similar pattern must vanish, Together with 

B-C= D--E= �89 "+l and C D = e " - e  "+l (3.1) 

this gives for ec the condition 

B C +  D E =  CD --* e c = 0.5 (3.2) 

822/'59/5-6-15 



1316 Chennaoui et  al. 

0.8-  

0 .7 -  

0 6 -  

0 .5 -  

0.3 

02 

0.1 

0.0 
O0 

[ I I [ I / I I .... ~ 

I .. . . .  I I 1 I I I I I 

0,1 02 0.3 Oz, 05 0.6 0,7 0.8 0.9 1.0 

(a) 

Fig. 3. 

I I L I I [ L I I i | 

0.9- 

0.8 

0.7 -4 

0.6- 

0.5 

' 03 o, 

0.[ 
0.0 0.1 0.2 0.3 O~ 0.5 0.6 0.7 0.8 0.9 10 

X 

(b) 

(a) The first-order attractor and (b) the second-order attractor for r /= 2. 
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There is an equivalent possibility to generate the nth-order attractor. 
Equations (2.1) and (2.2) can be written in vectorial notation 

Zi+ 

The nth iterate of the two-dimensional map G is denoted by G ", i.e., 

Gn((x, z)) = G(G(.. .(G((x, z)))...)) n-times (3.4) 

The zeroth-order attractor is the line 7 (o) = {(x, z ) [ z  = x, x ~ [0, 1 ] }. The 
nth-order attractor is the image of ~(o) under the map G ", which can be 
seen as follows. The point (a, a) belongs to ?(o) for 0 < a <  1J The value 
Gn((a, a)) is given by 

G ' ~ ( ( a , a ) ) =  ( 1 - e ) f n ( a ) + ( 1 - e ) e f n - i ( a ) +  . . .  + ( l _ s ) ~ n - I f ( a ) + e n  a 

(3.5) 

where f "  is the nth iterate of the map f [Eq. (2.1)]. The inversion of the 
equation b = f n ( a )  gives a as a function of b. This inversion is not unique, 
because there are 2 n different branches. If one of the possible solutions is 
inserted into the vector on the right-hand side of Eq. (3.5), the zero of the 
argument of one of the 6-functions of Eq. (2.8) is recovered. This proves the 
assertion. From this representation one recognizes that the nth-order 
attractor consists of the single curve 7(n)= { G " ( ( x , z ) ) [ z = x ,  x e  [0, 1]}, 
which can have intersections with itself. 

Figure 5 shows the attractor in the phase space corresponding to the 

8 

C 

w "7 c % 

Fig. 4. Schematic diagram demonstrating the topological properties of the a~tractor. 
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Fig. 5. The  a t t rac tor  (z,  versus  x , )  for the values (a) q = 2, (b) 1, and  (c) 0.1. 
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Fig. 5. (Continued) 

values r /=2  (Fig. 5a), t /= 1 (Fig. 5b), and r/=0.1 (Fig. 5c). These pictures 
are obtained by iterating Eqs. (2.1) and (2.2) and plotting Zi+l versus xi+l .  
The shrinkage of the attractor in the z direction for decreasing t/is due to 
the normalization ( l - e )  in Eq. (2.1). For  t /=0.1 the dimension of the 
attractor is visibly two. 

4. C A L C U L A T I O N  OF T H E  H A U S D O R F F  D I M E N S I O N  Do 

The Hausdorff dimension D O is calculated from 

In Nd) 
D o = lim (4. I ) 

t~o In I 

N(I) is the minimum number of squares of side length ! needed to cover the 
attractor. If ~ is smaller than ec, the attractor is self-similar and the 
Hausdorff dimension can be calculated in the following way. Only those 
lines divided from each other by a mean distance greater than 1 can be 
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resolved. The smallest distance between two adjacent lines of the nth-order 
attractor is e ~. If n is chosen such that 

e n(l/~ I (4.2) 

holds, then the distribution of squares which cover the n(/)th-order r 
cover the whole attractor of the system (3.2), too. The n(/)th-order attractor 
consists of 2 n(z) lines. The smallness of e ensures that most squares hit only 
one line of the n(/)th-order attractor; therefore an upper bound N > for the 
number of squares which cover the attractor is 

2n(l/ 
N>(/)  ~ l (4.3) 

The number lN>(l)  is proportional to the length of the curve ~("). Taking 
into account that e = exp( - t / ) ,  

ln(2-Ln(Z)/"/l) in 2 
Do ~< lim -~ 1 + - -  (4.4) 

t-,o In l t/ 

follows. In Eq. (4.3) we have counted too many squares. In order to have 
a lower bound for N(1), we substract the number of intersections of two 
lines (see, for example, Fig. 5b) for all possible pairings. A pair of lines will 
intersect once at most; therefore, the maximum number of intersections is 
given by 2"-  12 n _ 1 ~ 2 2n- 1. For  a lower bound of the Hausdorff dimension 
this yields 

ln(2-1~(z)/"/l - 2 1--21n(l)/rt) 
Do ~> lim 

t~o In l 

in ln( l - l 1 -ln(Z)/n/2 ) 
= 1 + 2 _ l i r a  (4.5) 

r/ z~o in l 

If t/is greater than In 2 (i.e., e < ec), the lower bound of Do equals the upper 
bound of Do. 

The lower bound for q for the applicability of Eq. (4.4) can be derived 
alternatively with the following approach: The number N(l)  cannot grow 
faster than 1/l 2, this yields the inequality 

2-1n~l)/t/ 1 
~ < / 2  (4.6) 

which gives in the limit l--* 0 the condition 

t /> In 2 (4.7) 
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which is consistent with the condition from Eqs. (4.5) and (3.2). If r/ is 
smaller than the number in 2, the dimension of the attractor is two. The 
complete formula for the Hausdorff dimension therefore becomes 

In 2 
Do = 1 + (4.8) 

max(r/, in 2) 

Considering that In 2 is the positive Liapunov exponent for the logistic 
map (2.2), formula (4.8) proves the Kaplan-Yorke conjecture (5'6) in this 
specific case. 

In Fig. 6 the Hausdorff dimension of the attractor is plotted versus the 
filter parameter r/. The straight line is calculated from Eq. (4.8). The filled 
circles are obtained by evaluating the correlation function Cq(l) for q = 0 
numerically. See ref. 4 for the explicit form of the function Cq(l). 

The graph C~'(1) plotted versus In I sometimes exhibits oscillations 
(Fig. 7), which are due to the self-similarity of the attractor. In our specific 
example the period of the oscillations is t/. This can be understood from the 
following consideration. We discuss the formula 

In N(I) 
Do(l) (4.9) 

In(l/l) 

which can be interpreted as the dimension of the attractor, measured with 
squares of side length I. From (4.2) one obtains the equation 

n(l) = ln(1/l) (4.10) 

Fig. 6. 
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Plot of D O versus q. The straight line is the theory and the points are calculated by 
the correlation method for q = 0/4) 
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If one uses for the attractor the idealization presented in Fig. 4, then n(l) 
should be the steplike function 

n(/) = [ ~  1 (4.11) 

where [x]  is the Gauss bracket, giving the integer nearest to x. The 
steplike function n(l) takes into account the fact that the number of squares 
N(l) [Eq. (4.3)] needed to cover this idealized attractor will hardly change 
if l is varied between e n and zn+l. Inserting (4.11) in (4.3) then yields for 
Eq. (4.9) 

D o ( l )  = 1 (4.12) 

If the function Do(l) is plotted versus In l, points of discontinuity arise due 
to the Gauss bracket. The distance between two neighboring points of 
discontinuity is ~/. Since the correlation function Cg(l) preserves the 
topological properties of the attractor, the discontinuous points in Do(l) 
correspond to pieces with greater slope in Cg(l). The periodic structure in 
C~(l) is smeared out, because the distance between neighboring lines of the 
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nth-order attractor are not exactly proportional to e~, but vary, which can 
be seen, for example, in Fig. 7. The amplitude of the oscillations becomes 
smaller for decreasing values of t/. 

. C A L C U L A T I O N  OF THE GENERALIZED D I M E N S I O N  Dq 

The generalized dimension Dq is defined a s  (1) 

1 ln(~2,,j (pi, j(l)) q) Dq = lira 
q - l ~ o  In/  

(5.1) 

where pi, j(l) denotes the probability that the trajectory intersects the small 
square 

s,,, = [ x ~ -  �89 x~ + �89 • [ z j -  �89 zj + �89 

We take the x~ and zj to be equally distributed with distance l. The 
generalized dimension of the logistic map [Eq. (2.1)] is known to be/1) 

t" 
/ )q= l l  q for q~<2 

2(q--- 1 ) otherwise 

(5.2) 

The probability pi, j(l) is approximated by 

p~,j(l) ~- p(x.  zl)/2 (5.3) 

Using the n(l)th-order invariant density, this yields the following form: 

2n(/) 

Pi.J (l) ~ 2-n(l) fi(Xi) E ~Sv(,,'~)(x,),zj 12 (5.4) 
m = l  

where 

{~/I if ~) for a point (x, z)e Si.s U m ( X )  = Z  

6v~7~(x,~, ~, = otherwise (5.5) 

The explicit form of the functions (n) v m (X) is given in Eq. (2.8). The sum in 
Eq. (5.1) then reads 

f 2n(l ) }q 
Ei.j (Pi'j(l))q=z~'j". 2 n(Ofi(X,) m=iE (Sv2)(x,),z:12 (5.6) 
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As long as the attractor is self-similar, the &functions 

6 ~ , ) , ~  and @,~ . . . . .  ml=fim2 
m2~-  t ) ,  j 

give contributions from different squares Si, j only. Therefore the j summation 
yields 

(Pi, j ( l ) )  q = ~ 2"l t l (2- ' ( t )~(x i ) I )  q ( 5 . 7 )  

i , j  i 

Inserting this into Eq. (5.1) gives 

Dq-  
1 ln(Ei(~(x,) l )q)+(1-q)n(l) ln2 

= - -  lim 
q - l l ~ 0  In /  

In 2 
= O q  - ~  - - -  (5.8) 

r/ 

Therefore the q dependence is not affected by the filter. Formula (5.8) is 
valid if t/is greater than the Liapunov exponent In 2. 

In Fig. 8 the dimension Oq is depicted versus q. The straight lines are 
derived from Eq. (5.8) and the points are calculated by the correlation 
function numerically. (4) Line 2 corresponds to ~/~ oo (e = 0) and line 1 to 

= 1 (e ~ 0.37). 
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6. G E N E R A L I Z A T I O N  FOR AN A R B I T R A R Y  
O N E - D I M E N S I O N A L  M A P  

Let h be an arbitrary one-dimensional map, for which the iteration 
x i+l  = h(xi) gives a chaotic time series. We consider the system 

k Z i + l /  

The invariant density is derived in the same way as in Section 2. Let the 
solutions of the equation h ( x ' ) = x  be given by 

h(gh, j ( x ) ) = x ,  j =  1 ..... rn (6.2) 

where gh, i is one of the m different branches of the inverse of the function 
h. The index h is added to distinguish the functions from those of Section 
2. By the Frobenius-Perron equation one obtains the equation 

j= ,  elh'(gh, j ( x ) ) l  p gh ' j (x ) '  (6.3) 

where Zj is the characteristic function, which is 1 if gh, j ( x )  is real and 0 
otherwise. Let f ib(x) be the one-dimensional invariant density of the equation 
x i + , =  h(xi) .  For e = 0 one obtains as a solution 

p(~ z)  = fib(x) 6(z  - x )  (6.4) 

Using the same procedure as in Section 2, one gets the representation 

j l  , J2,..., jn = 1 

• Z - - X - -  ~ gh, j,(gh, j ,_l(. . ,(gh, j l (X) ) . . . ) )  (6.5) 
i = 1  

The functions Ojl,j2,...,j,(x ) are derived by doing the iterations which give 
p("). Since we are interested in the topological structure of the attractor 
only, their values for given argument x are not important. The zeros of the 
arguments of the f-functions give the attractor of nth order. If e is small, 
the nth-order attractor converges to a self-similar structure for n --, oo. The 
zeroth-order attractor is given by the line(s) 7(h~ = { (x, z)  lz = x, ~h(x ) - r  0} 
and the nth-order attractor is given by the curve(s) 7~n/= {GT~((x,z))[ 
(x,z)~7(h~ If 7(h ~ consists of k disconnected lines, y(h n) consists of k 
disconnected curves, each arranged in a self-similar pattern in the z - x  plane 
for small e. 
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Provided k is finite, the following considerations will hold. From the 
representation of the invariant density, we know that the attractor is 
self-similar; therefore, we can use the same procedure as above to calculate 
the Hausdorff dimension. If squares of length l are taken to cover the 
n(/)th-order attractor, where n(l) is determined from Eq. (4.2), they will 
cover the attractor of the system (6.1), too. The number of squares needed 
to cover the n(/)th-order attractor is proportional the total length of the 
curve 7~h "~, which can be estimated by linearization of Eq. (6.1). Consider 
the vector 

Azo} ~ 2 2 ( ] )  (6.6) 

tangent to the curve ?~o) at the point (Xo, Zo) and whose length J1 is 
infinitesimally small. The map G~ maps the point (Xo, Zo) into the point 
(x~, z~) = G~(xo, Zo) and the tangent map of G~ maps (Axo, Azo) into 

,~z~j=A, ,...21Ao = \ Azo} b. c. \ AzoJ 
(6.7) 

where the tangent map .3 is given by the matrix 

{ah(xj)/axj 
A;=kah(xl)/ax: ~ 

The matrix product in Eq. (6.7) is 

( AM(xo) O)  (6.9) A._~...A1Ao= AM(Xo)+eAM l(Xo)+ . . . + e "  X Ah~ 

with 

(6.8) 

(6.12) 

AM(xo) - Oh(x j) Oh(x j_ ~)... Oh(xo) (6.10) 
~Xj ~Xj_ 1 ~Xo 

from which the length Al (n) of the iterated vector (Ax~o ~, Az~ )) can be 
calculated. Using the definition for the positive Liapunov exponent 2h of 
the map h, which states that 

lim _1. ln(lAh j (Xo)q) = '~h (6.11 ) 
} ~  J 

this length can be estimated to be 

Al('~= {(a, Axo)2,+ F(b,~+c,,)Azo]Z}l/2~Ale"ah[l+o(e)] if n>~p 
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p is chosen such that it fulfills the condition 

IAhJ(xo)]---e j~' for all j>~p (6.13) 

Since Al ~n~ is nearly independent of Xo for n > p, the length of the curve 7~ ") 
is given by Al(nl/Al times the length of 7~ ~ The number N(l) of squares 
with sides of length l needed to cover the nth-order attractor is thus 
estimated to be 

1 A l  ('(l)) e n(/)/.h 

N>(/) l Al l (6.14) 

This yields the upper bound for the Hausdorff dimension 

D O ~< 1 + (6.15) 
max(r/, 2h) 

7. C O N C L U S I O N S  

We have demonstrated for the specific example of the logistic map 
how a filter induces self-similarity, which is responsible for the increase of 
the Hausdorff dimension. The procedure could be extended to arbitrary 
one-dimensional maps. For the system consisting of the logistic map and 
the filter the generalized dimension also could be calculated. 

NOTE A D D E D  IN PROOF 

The suggestions made in Sections 9.1 and 9.2 for reaching larger 
Reynolds coefficients have been recently tested, using a new implementation 
of the code on a Connection Machine, and we briefly report on the results. 
So far we have made use only of the 24-bit model FCHC-6. 

The first method, thickening the lattice in the fourth dimension, 
unfortunately does not produce the desired result. Components of the 
viscosity tensor which involve the fourth dimension do indeed decrease 
when the thickness increases. However, the components of physical interest 
are those which do not involve the fourth dimension, and these components 
are found to increase with the thickness. The variations are small in any 
case, of the order of a few percent only. 

The second method, approaching a Boltzmann situation by randomly 
exchanging bits between parallel replicas of the FCHC lattice, was tested 
using from 2 to 512 replicas. The viscosity decreases and is indeed found 
to tend to the Boltzmann value when the number of replicas increases. This 
method therefore offers a hope of ultimately reaching zero viscosity. 
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However, the observed convergence is rather slow. This might be due to 
the fact that, for reasons of computational efficiency, bit shuffling was not 
so far fully random. 
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