Journal of Statistical Physics, Vol. 59, Nos. 5/6, 1990

The Mechanism of the Increase of the Generalized
Dimension of a Filtered Chaotic Time Series

A. Chennaoui,! J. Liebler,! and H. G. Schuster?

Received September 14, 1989

The determination of the attractor dimension from an experimental time series
may be affected by the influence of filters which are incorporated into many
measuring processes. While this is expected from the Kaplan-Yorke conjecture,
we show that for one-dimensional maps a weak filter can induce a self-similarity
which is responsible for the increase of the Hausdorff dimension. We are able to
calculate the increase of the generalized dimension D, for the filtered time series
of the logistic map x,, ; =rx,(1 —x,) at r =4 analytically.

KEY WORDS: Frobenius-Perron integral equation; filtered time series of
one-dimensional maps; Liapunov exponent; Hausdorff dimension; generalized
dimension D,.

1. INTRODUCTION

Chaotic signals are frequently characterized by evaluating the fractal
dimension of the underlying strange attractor, which is reconstructed in a
suitable embedding space.’’ A variety of factors affect the determination of
its dimension. One of these is the bandwidth of a filter which could be
incorporated inevitably into the measuring instrument. Badii and Politi‘>®
showed by means of the Kaplan—Yorke conjecture and numerically that the
dimension of a low-dimensional chaotic time series can be raised if it is
filtered by a low pass filter of first order.

We investigate the filtered time series of the logistic map and show
analytically how its dimension increases. The two-dimensional invariant
density of the coupled system consisting of the logistic map and the filter
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is calculated in a perturbation-theoretic way in the limit of a weak filter.
The resulting density is in excellent agreement with numerical results
obtained with a statistical method in which the two-dimensional phase
space is divided into squares and the number of intersections of the trajectory
with each square is counted. The analytic form of the density allows us also
to calculate the generalized dimension’ D, analytically. We show that for
arbitrary one-dimensional maps a weak filter always induces self-similarity
due to which the Hausdorff dimension increases.

2. CALCULATION OF THE INVARIANT DENSITY p(x, z)

The influence of a low-pass filter of first order on a signal x; which
appears at discrete times / can be modeled via

zip=ez;+ (1 —e)x; 4y (2.1)

Here we assumed that x; is confined to the interval [0, 1] and we scaled
z; to the same interval by introducing a factor (1 —¢). The z; is the filtered
signal and e=e~", where # is the bandwidth of the filter.*® For the
logistic map at r=4

X1 =f(x)=4x,(1—x;) (2.2)

the invariant density is given by
1
nlx(1—x)]1"

The two-dimensional density p(x, z) obeys the Frobenius—Perron equation

plx)= (2.3)

pix, z)= fl dz' fl dx' d(x —4x'(1—x"))d(z—ez' — (1l —¢)x) p(x', 2')

1 —(1—
e I (IO E VA TR EXY

de(1—x)'? 5,
where
L= (=1) (1—x)'?
2 )

g},(_x): j=12 (2.5)

and (1—&)x<z<e+ (1—¢)x. For ¢=0 the two-dimensional invariant
density is given by
pO(x, z) = p(x) 8(z — x) (2.6)

Equation (2.4) can be solved iteratively via

pi(x, 2)=F[p" V], (2.7)
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For arbitrary n>1 the invariant density p™ is given by
p™(x, z)
—2p) % oa—maxe T o1-0) g (g (g, )

JUs 2 jn=1,2 i=1

o
=27"p(x) ) o(z—v(x)) (2.8)
m=1
The intricate functions in the argument of the 2” d-functions in p are
denoted by v™)(x) (m=1, 2,..., 2"). If all powers ¢" which appear in p™ are
replaced by zero, it reduces to p™ '), Therefore the iteration of nth order
will give a solution which is correct up to the nth power of &
We find explicitly )

p(o’(x,z)=m5(z——x) (293)

the first iteration yields

1 1 1 1 1/2
,0( )(X, Z)=5n—[x—(1—_x—)}—l-/—2{5 (z—(l—a)x—-e(§+§(l—x) >)

l___l_ — )12
+5<Z—(1—-8)X—8(2 2(1 x) >>} (2.9b)
and the second iteration yields
1 1 1
p(z)(x, Z) =m {5 <Z— (1 —"S)X—S(l —8) <§+§' (1 —X)1/2>

/1 171 1 a1
~#(5+3l3m30-07] )

+5(Z—(l-—B)x—-S(l—8)(%-}-%(1—)6)1/2)

117t 1 12
233373007 )

+5(2—(1—s)x——8(1—8) (1—%(1—x)1/2)

1 171 1 7412
o2 T T (1 12
P <2+2-2+2(1 x) ))

+5<z—(1—s)x—8(1—8) (———(1—x)1/2>

— ~11/2
R ) R
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Fig. 1. The invariant density p(x, z) computed with the statistical method for =0.7.

The results of the statistical method explained in the introduction (Fig. 1)
and the perturbational method (Fig. 2) are compared for #=0.7. For the
perturbational method p'®) has been used. The §-functions appearing there
have been approximated by Gaussians.

3. THE STRUCTURE OF THE ATTRACTOR

The image of the attractor in the x—z plane is generated by the zeros
of the arguments of the §-functions of the specific approximations. In Fig. 3
the attractor generated by p') (Fig. 3a) and p™® (Fig. 3b) are depicted;
they are called first- and second-order attractors for brevity. We chose
n=2 for these plots, ie., e~0.14 and &*>~0.02. The first-order attractor
consists of two lines in the plane the distance of which is of order ¢. They
have been created from the solitary line of the zeroth-order attractor by the
iteration p = F[p@7. Calculating the second-order attractor, each line
of the first-order attractor is split into two lines separated by a distance of
order &2 Provided ¢ is small enough, the second-order attractor consists of
two pairs of lines the mean distance of which is of order &. This process can
be continued by iteration such that the nth-order attractor consists of 2”
lines, which are arranged in a self-similar pattern. This self-similarity is
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Fig. 2. The invariant density p(x, z) computed with the perturbational method for n =0.7.

characterized by the fact that each line of the attractor which can be
resolved at a given scale will split into two lines if the scale is magnified by
1/e. This line doubling is a consequence of the properties of the logistic
map [Eq. (2.2}], i.e., the inverse map consists of two branches.

If & exceeds a critical value &., the self-similarity of the attractor
vanishes and it becomes quasi-two-dimensional. This can be understood
from a simple consideration, which is illustrated by the schematic diagram
in Fig. 4. The straight lines are two adjacent lines of the nth-order attractor.
The dashed lines are the corresponding four lines of the (n+ 1)th-order
attractor; each pair is positioned symmetrically around the correspondent
line of the nth-order attractor. If the distance between line C and line D,
which is denoted by CD, becomes lower than the sum BC + DE, the self-
similar pattern must vanish. Together with

BC=DE=1e""! and CD=¢"—¢"t! (3.1)
this gives for ¢, the condition

BC+DE=CD—¢,=05 (3.2)

822/59/5-6-15
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Fig. 3.
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(a) The first-order attractor and (b) the second-order attractor for n =2.
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There is an equivalent possibility to generate the nth-order attractor.
Equations (2.1) and (2.2) can be written in vectorial notation

(x> — G((x21)) (3.3)

Ziy1
The nth iterate of the two-dimensional map G is denoted by G”, i.e.,
G"((x, 2)) = G(G(...(G((x, z)))...)) n-times (3.4)

The zeroth-order attractor is the line 79 = {(x, z)|z=x, xe [0, 1]}. The
nth-order attractor is the image of y© under the map G”, which can be
seen as follows. The point (a, a) belongs to y© for 0 <a< 1. The value
G"((a, @)) is given by
f(a) )
G)‘I : p—
(@D~ (1) g1 o 1 -1+
(3.5)

where /7 is the nth iterate of the map f [Eq. (2.1)]. The inversion of the
equation b= f"(a) gives a as a function of 4. This inversion is not unique,
because there are 2” different branches. If one of the possible solutions is
inserted into the vector on the right-hand side of Eq. (3.5), the zero of the
argument of one of the é-functions of Eq. (2.8) is recovered. This proves the
assertion. From this representation one recognizes that the nth-order
attractor consists of the single curve ™= {G"((x, z)}|z=x, xe [0, 1]},
which can have intersections with itself.

Figure 5 shows the attractor in the phase space corresponding to the

A e | S
B
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Fig. 4. Schematic diagram demonstrating the topological properties of the attractor.
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(b)

Fig. 5. The attractor (z, versus x,) for the values (a) =2, (b) 1, and (c) 0.1.
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Fig. 5. (Continued)

values =2 (Fig. 5a), n=1 (Fig. 5b), and # =0.1 (Fig. 5c). These pictures
are obtained by iterating Egs. (2.1) and (2.2) and plotting z,. , versus x, .
The shrinkage of the attractor in the z direction for decreasing # is due to
the normalization (1 —¢) in Eq. (2.1). For #=0.1 the dimension of the
attractor is visibly two.

4. CALCULATION OF THE HAUSDORFF DIMENSION D,

The Hausdorff dimension Dy is calculated from

. In N(J)
= —— 4-}
Do /hf.% In/ (1)
N(/) is the minimum number of squares of side length / needed to cover the
attractor. If ¢ is smaller than ¢., the attractor is self-similar and the
Hausdorff dimension can be calculated in the following way. Only those
lines divided from each other by a mean distance greater than / can be
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resolved. The smallest distance between two adjacent lines of the nth-order
attractor is ¢". If n is chosen such that

g~ (4.2)

holds, then the distribution of squares which cover the n(/)th-order attractor
cover the whole attractor of the system (3.2), too. The n(/)th-order attractor
consists of 2"¢) lines. The smallness of ¢ ensures that most squares hit only
one line of the n(/)th-order attractor; therefore an upper bound N~ for the
number of squares which cover the attractor is

zn(l)
N> ()~

(4.3)

The number /N> (/) is proportional to the length of the curve y™, Taking
into account that ¢ =exp(—#),

In(2 g In2
D0<lim-—u=l+L (4.4)
1-0 In! n

follows. In Eq. (4.3) we have counted too many squares. In order to have
a lower bound for N(!), we substract the number of intersections of two
lines (see, for example, Fig. 5b) for all possible pairings. A pair of lines will
intersect once at most; therefore, the maximum number of intersections is
given by 2" 712" — 1 ~ 22"~ ! For a lower bound of the Hausdorff dimension
this yields

1n(2_'“(”/’7/l—— 2-1-2 ln(l)/n)

> lim —
Do > lim In
In 2 In(1 — 7'~ =V
_14B2 g, 0 /2) (4.5)
N -0 In/

If 5 is greater than In 2 (i.e., ¢ <&.), the lower bound of D, equals the upper
bound of D,.

The lower bound for # for the applicability of Eq. (4.4) can be derived
alternatively with the following approach: The number N(/) cannot grow
faster than 1//% this yields the inequality

2—111(1) 1
1 M i (4.6)

which gives in the limit /— 0 the condition

n>In2 (4.7)
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which is consistent with the condition from Egs. (4.5) and (3.2). If  is
smaller than the number In 2, the dimension of the attractor is two. The
complete formula for the Hausdorff dimension therefore becomes

In2

Dy=1+———
0 +max(n, In2)

(4.8)

Considering that In 2 is the positive Liapunov exponent for the logistic
map (2.2), formula (4.8) proves the Kaplan-Yorke conjecture™® in this
specific case.

In Fig. 6 the Hausdorff dimension of the attractor is plotted versus the
filter parameter #. The straight line is calculated from Eq. (4.8). The filled
circles are obtained by evaluating the correlation function CJ*(/) for ¢=0
numerically. See ref. 4 for the explicit form of the function C7'(/).

The graph CJ'(!) plotted versus In/ sometimes exhibits oscillations
(Fig. 7), which are due to the self-similarity of the attractor. In our specific
example the period of the oscillations is #. This can be understnod from the
following consideration. We discuss the formula

_In N())

Doll)= In(1/1)

(4.9)

which can be interpreted as the dimension of the attractor, measured with
squares of side length /. From (4.2) one obtains the equation

In(1/1)

(4.10)

05 1 i I | 1 | L ]

Fig. 6. Plot of D, versus 5. The straight line is the theory and the points are calculated by
the correlation method for g =0.®
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-tn Cq (L)
F

Fig. 7. Plot of —In[C'({)] versus —In/ for ¢ =0 for the embedding dimension m=2,3, 4
and for the filter parameter n = 2. The period of the oscillations is indicated by the two dashed
lines.

If one uses for the attractor the idealization presented in Fig. 4, then n(/)
should be the steplike function

n(l) = [13%@} 1)

where [x] is the Gauss bracket, giving the integer nearest to x. The
steplike function #(/) takes into account the fact that the number of squares
N(I) [Eq. (4.3)] needed to cover this idealized attractor will hardly change
if / is varied between ¢" and ¢”*'. Inserting (4.11) in (4.3) then yields for
Eq. (4.9)

Do(l)=1+

In2 [ln(l/l)] “12)

In(1/I} [ 7

If the function Dy(/) is plotted versus In /, points of discontinuity arise due
to the Gauss bracket. The distance between two neighboring points of
discontinuity is #. Since the correlation function C§(/) preserves the
topological properties of the attractor, the discontinuous points in Dy(/)
correspond to pieces with greater slope in CJ'(/). The periodic structure in
C(l) is smeared out, because the distance between neighboring lines of the
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nth-order attractor are not exactly proportidnal to £”, but vary, which can
be seen, for example, in Fig. 7. The amplitude of the oscillations becomes
smaller for decreasing values of #.

5. CALCULATION OF THE GENERALIZED DIMENSION D,

The generalized dimension D, is defined as"’

_ Lo In(3,(p, ;(D))Y)
Dy=_—qlm In/

(5.1)

where p, ;(/) denotes the probability that the trajectory intersects the small
square

Si,jz [xi_?l:l, x,‘l"%l] X [Zj—%[’ Zj‘f‘%l]

We take the x; and z; to be equally distributed with distance /. The
generalized dimension of the logistic map [Eq. (2.1)] is known to be'"

p
1 forg<2

D,= (5.2)

q

otherwise
2(g—1)

The probability p; ;(/) is approximated by
i (1) = p(x;,2,)1° (53)

Using the n(/)th-order invariant density, this yields the following form:

zn(/)

P (N =27"0p(x,) 3 Sy, 50 (54)
m=1

where

0 otherwise (5:3)

S {1/1 if vi(x)=z fora point (x,z)eS,,
o () 2 '
The explicit form of the functions »%’(x) is given in Eq. (2.8). The sum in
Eq. (5.1) then reads

LJ

anll)
)‘I
S (0o, ()= {2"<’>ﬁ<x,-> Y i} (5.6)
Lj m=1
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As long as the attractor is self-similar, the é-functions
5113:1](&), z and 5v£,'112)(x,), z9 ml 5& mZ

give contributions from different squares S, ; only. Therefore the j summation
yields

2 (py ()7 =2 2020 p(x,) 1y (3.7)

Inserting this into Eq. (5.1) gives

U InG (p(x) 1))+ (1 —g)n(l)In2

_—
Do=o—7m In !
2
=Dq+n7 (5.8)

Therefore the g dependence is not affected by the filter. Formula (5.8) is
valid if # is greater than the Liapunov exponent In 2.

In Fig. 8 the dimension D, is depicted versus g. The straight lines are
derived from Eq. (5.8) and the points are calculated by the correlation
function numerically.® Line 2 corresponds to # — oo (¢=0) and line 1 to
n=1 (e~037).

20 T T T T T T T T T
18 -
16 o

Fig. 8. Plot of D, versus g. The straight lines are the theoretical curves and the points are
calculated by the correlation method.” Curve 1 is calculated for =1 and curve 2 for 5 — oc.
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6. GENERALIZATION FOR AN ARBITRARY
ONE-DIMENSIONAL MAP

Let 4 be an arbitrary one-dimensional map, for which the iteration
X;,1=h(x;) gives a chaotic time series. We consider the system

Xip1 h(x;)
(Zz+1> (b, 2))= <8Zi+h(xi)> (1)

The invariant density is derived in the same way as in Section 2. Let the
solutions of the equation A(x’)=x be given by

hgn;,(x)=x, j=1,.,m (6.2}

where g, , is one of the m different branches of the inverse of the function
h. The index £ is added to distinguish the functions from those of Section
2. By the Frobenius-Perron equation one obtains the equation

m

)= ¥ = (g 0,22 (63)

where y; is the characteristic function, which is 1 if g, ;(x) is real and 0
otherwise. Let p,(x) be the one-dimensional invariant density of the equation
X;.1="h(x;). For e=0 one obtains as a solution

pO(x, 2) = py(x) 6(z — x) (6.4)

Using the same procedure as in Section 2, one gets the representation

P, 2)= Y 8, 00)

JUs Jaomn Ju=1

x5<z—x— » s"g,,,,-,(gh,j,_l(...<g,,,j1<x)>...))) (65)

i=1

The functions 9, , . (x) are derived by doing the iterations which give

p'™. Since we are 1nterested in the topological structure of the attractor
only, their values for given argument x are not important. The zeros of the
arguments of the o-functions give the attractor of nth order. If ¢ is small,
the nth-order attractor converges to a self-similar structure for n — co. The
zeroth-order attractor is given by the line(s) i = {(x, z)| z = x, p,(x #0}
and the sth-order attractor is given by the curve(s) y{ = {G?((x, z))|
(x,z)ep}. If » consists of k disconnected lines, y}l’” con51sts of k
disconnected curves, each arranged in a self-similar pattern in the z—x plane
for small &.
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Provided k is finite, the following considerations will hold. From the
representation of the invariant density, we know that the attractor is
self-similar; therefore, we can use the same procedure as above to calculate
the Hausdorff dimension. If squares of length / are taken to cover the
n(l)th-order attractor, where n(/) is determined from Eq. (4.2), they will
cover the attractor of the system (6.1), too. The number of squares needed
to cover the n(/)th-order attractor is proportional the total length of the
curve %, which can be estimated by linearization of Eq. (6.1). Consider

the vector
Ax, Al /1
= 6.6
(AZO> \/—2_<1> (66)

tangent to the curve y{¥ at the point (x,,z,) and whose length 4/ is
infinitesimally small. The map G} maps the point (x,, z,) into the point
(x,, z,) = GJ(x,, zo) and the tangent map of G} maps (4x,, 4z,) into

Ax{N\ . o [dx, a, 0 Ax0>
— e = 6-
<AZ(()n)> Ar-rdido (AZO <bn ¢,/ \dzq (67

where the tangent map A is given by the matrix

. oh(x;)/ox; O
J (ah(x,)/ax, g>

The matrix product in Eq. (6.7) is

. . Ah™(x4) 0
A A A= 6.
nt 1o (Ah"(x0)+sAh”l(x0)+ v 2" AR (x,) e”> (69)

with
Oh(x;) Oh(x;_,) o Oh(x4)
ox;, 0x;_, 0xq

J

Ah!(x,) = (6.10)

from which the length 4/ of the iterated vector (Axy”, 4z{") can be
calculated. Using the definition for the positive Liapunov exponent 4, of
the map A, which states that

lim S In(| 4R (xo)|) = A, (6.11)

J—> oo ]
this length can be estimated to be

A1 = {(a, 4x6)%+ [(by+¢,) Az} 2~ Al ™[ 1+ 0(e)] i n>p
(6.12)
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p is chosen such that it fulfills the condition
|4 (xy)]| = e forall j=p (6.13)

Since 41" is nearly independent of x, for n> p, the length of the curve y{"
is given by 4/"/Al times the length of y{). The number N(/) of squares
with sides of length / needed to cover the mth-order attractor is thus
estimated to be

1 AJU) gnlh)in

> ~ 6.14
N~y ; (6.14)
This yields the upper bound for the Hausdorff dimension
D,<1 +—£"——— (6.15)
°7 7 max(n, ) ‘

7. CONCLUSIONS

We have demonstrated for the specific example of the logistic map
how a filter induces self-similarity, which is responsible for the increase of
the Hausdorff dimension. The procedure could be extended to arbitrary
one-dimensional maps. For the system consisting of the logistic map and
the filter the generalized dimension also could be calculated.

NOTE ADDED IN PROOF

The suggestions made in Sections 9.1 and 9.2 for reaching larger
Reynolds coefficients have been recently tested, using a new implementation
of the code on a Connection Machine, and we briefly report on the results.
So far we have made use only of the 24-bit model FCHC-6.

The first method, thickening the lattice in the fourth dimension,
unfortunately does not produce the desired result. Components of the
viscosity tensor which involve the fourth dimension do indeed decrease
when the thickness increases. However, the components of physical interest
are those which do not involve the fourth dimension, and these components
are found to increase with the thickness. The variations are small in any
case, of the order of a few percent only.

The second method, approaching a Boltzmann situation by randomly
exchanging bits between parallel replicas of the FCHC lattice, was tested
using from 2 to 512 replicas. The viscosity decreases and is indeed found
to tend to the Boltzmann value when the number of replicas increases. This
method therefore offers a hope of ultimately reaching zero viscosity.



1328 Chennaoui et al.

However, the observed convergence is rather slow. This might be due to
the fact that, for reasons of computational efficiency, bit shuffling was not
so far fully random.
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